Exercise 49

A runner sprints around a circular track of radius 100 m at a constant speed of $7 \mathrm{~m} / \mathrm{s}$. The runner's friend is standing at a distance 200 m from the center of the track. How fast is the distance between the friends changing when the distance between them is 200 m ?

Solution

Draw a schematic of the track at a certain time.

The aim is to find $d r / d t$ when $r=200$. Start with the formula relating the sides of this triangle, the law of cosines.

$$
\begin{align*}
r^{2} & =100^{2}+200^{2}-2(100)(200) \cos \theta \\
& =50000-40000 \cos \theta \tag{1}
\end{align*}
$$

Take the derivative of both sides with respect to time by using the chain rule.

$$
\begin{align*}
\frac{d}{d t}\left(r^{2}\right) & =\frac{d}{d t}(50000-40000 \cos \theta) \\
2 r \cdot \frac{d r}{d t} & =-40000(-\sin \theta) \cdot \frac{d \theta}{d t} \\
r \frac{d r}{d t} & =20000(\sin \theta) \frac{d \theta}{d t} \tag{2}
\end{align*}
$$

In order to write $\sin \theta$ in terms of r, solve equation (1) for $\cos \theta$,

$$
\cos \theta=\frac{50000-r^{2}}{40000}
$$

and draw the implied right triangle.

As a result,

$$
\sin \theta=\frac{\sqrt{40000^{2}-\left(50000-r^{2}\right)^{2}}}{40000}
$$

which means equation (2) becomes

$$
\begin{aligned}
r \frac{d r}{d t} & =20000(\sin \theta) \frac{d \theta}{d t} \\
& =20000\left[\frac{\sqrt{40000^{2}-\left(50000-r^{2}\right)^{2}}}{40000}\right] \frac{d \theta}{d t} \\
& =\frac{\sqrt{40000^{2}-\left(50000-r^{2}\right)^{2}}}{2} \frac{d \theta}{d t}
\end{aligned}
$$

Solve for $d r / d t$.

$$
\frac{d r}{d t}=\frac{\sqrt{40000^{2}-\left(50000-r^{2}\right)^{2}}}{2 r} \frac{d \theta}{d t}
$$

Note the formula for arclength on this track: $s=100 \theta$. Take the derivative of both sides with respect to $t: \frac{d s}{d t}=100 \frac{d \theta}{d t}$. This means that

$$
\begin{aligned}
\frac{d r}{d t} & =\frac{\sqrt{40000^{2}-\left(50000-r^{2}\right)^{2}}}{2 r}\left(\frac{1}{100} \frac{d s}{d t}\right) \\
& =\frac{\sqrt{40000^{2}-\left(50000-r^{2}\right)^{2}}}{2 r}\left(\frac{1}{100} \cdot 7\right) \\
& =\frac{7 \sqrt{40000^{2}-\left(50000-r^{2}\right)^{2}}}{200 r}
\end{aligned}
$$

Therefore, when the distance between the friend and runner is 200 meters, the rate of change of this distance with respect to time is

$$
\left.\frac{d r}{d t}\right|_{r=200}=\frac{7 \sqrt{40000^{2}-\left[50000-(200)^{2}\right]^{2}}}{200(200)}=\frac{7 \sqrt{15}}{4} \frac{\mathrm{~m}}{\mathrm{~s}} \approx 6.77772 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

